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Summary

Metal oxide-zirconia systems are a potential class of
materials for use as structural materials at temperatures
above 1900 K. These materials must have no destructive phase
changes and low vapor pressures. Both alkaline earth oxide
(MgO, CaO, SrO, and ﬁao);zirconia and some rare earth oxide
(Y503, Scy03, Lajy03, CeOp, SmyO3, GdpO03, YbyO03, Dy 03, HopO3,
and Er,03)-zirconia systems are examined. For each systenm,
the phase diagram is discussed and the vapor pressure for
each vapor specie is calculated via a free energy
minimization procedure. The available thermodyamic
literature on each system is also sﬁrveyed. Some of the
systems look promising for high temperature structural

materials.




I. Introduction

The developement of engine materials has been
dictated by ever increasing demands for high temperature
operation. In a recent rép6f£1 on potential materials for
engine applications above 3000 F (1900 K), the various issues
involved in selection of such a material were outlined. A
primary issue at these high temperatures is surface
stability, in particular oxidation resistance. At lower
temperatures, metals and non-oxides achieve their oxidation
resistance by the formation of a protective oxide film.
However at temperatures abd§é“i900 K:‘it,Wés éhown that
transport rates are so fast that reasonable environmental
durability cannot be achieved with a non-oxide. Therefore it
was concluded that oxides showed the most promise for
application at temperatures above 1900 K.

The criteria for selecting an oxide include a high melting
point, low vapor pressure, and solid phase stability. One of
the most interesting refractory oxides is 2rOj5, which has a
melting point of 2973 K and a low vapor pressure. The

primary difficulty with zirconia are its phase changeszz

1443 K 2643 K
Monoclinic = Tetragonal = Cubic (1)
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The first phase change is the most catastrophic. 1In addition
zirconia has limited thermal shock resistance.

The solution to the phase change problem has been to add
a second oxide3. Depending on the amount of second oxide
added, this can work in several ways. A small amount can
stabilize a mixture of the monoclinic and tetragonal phase.
This is known as partially stabilized zirconia and has
generated a great deal of interest.4"® For the temperatures
greater than 1900 K, partially stabilized zirconia is of
limited interest. A further addition of a second oxide leads
to formation of the cubic phase and is termed fully
stabilized zirconia. These systems are of interest in the
extremely high temperature range. Finally some coxides form
compounds with zirconia. These compounds may show the
desirable properties of zirconia and eliminate some of the
less desirable properties.

The purpose of this report is to discuss the
thermodynamic properties of a number of these systems. The
primary emphasis will be on fully stabilized cubic zirconia
and high melting zirconia-metal oxide compounds. The
requirements for fully stabilized zirconia are not completely
understood. The second oxide must be cubic and the metal
must be of a comparable ionic radius3. For these high
temperatures the second oxide must be refractory. There is

also some evidence that strong interactions between the




zirconia and the second oxide should not occur. The most

common stabilizers are the alkaline earth oxides--MgO and

]

Ca0. These systems will be discussed in detail. The
remaining alkaline earth oxides--SrO and BaO--do not
stabilize the cubic phase, but form high melting compounds
with zirconia. These will also be discussed. In addition to
the alkaline earth metal oxides, many of the rare earth
oxides are stabilizers for zirconia. The systems which will
be discussed are Ce0y-2r0Op, Y,03-2rOj, Sc,03-Zr0O,,
Laz03-2r03, Smp03-2r0p, Gdp03-2rOy, Yby03-2r0,,
Dy203-2r03, Hop03-2rOp, and Er03-2rOp. In general these
oxide additions do not form compounds with 2rO5, but they do
stabilize the cubic phase.

As mentioned, kinetics for temperatures greater than
1900 K are generally quite rapid. Therefore thermodynamics
can be used with good reliability to predict the chemical
behavior of a particular material at these temperatures. The
major concern is volatility. Vapor pressures for each of the
various oxide systems are presented. The best thermodynamic
data available is used. The appendix includes a discussion
of the sources of thermodynamic data and a complete listing
of the data used.

There are a number of issues to be considered in these
vapor pressure calculations. Consider first pure Z2x05(s).

It is known to vaporize as follows’r8:




zZros(s) = 2r03(g) (2)
2ro,(s) = 2ro(g) + 0(g) (3)
2rop(s) = 2r(g) + 02(9) (4)

Subject to the mass balance constraint in a closed system:

2 © Zr containing species in the vapor =

T O containing species in the wvapor (5)

These four equations can be solved simultaneously or a free
energy minimization program such as SOLGASMIX? can be used.
Tt should be noted that in order to obtain equilibrium vapor
pressures from SOLGASMIX, one atomosphere of argon was put
in as a reactant. The results of such a calculation for pure
2r0, are shown in Figure 1, based on data listed in the
appendix. For reactions (3) and (4), where oxygen is
released, an overpressure of oxygen will suppress the
vaporization process. Figure 2 shows the dramatic effect of
one atmosphere of oxygen on suppressing the amount of ZroO(g)
and 2r(g). However for reaction (2) where no oxygen is

released, the oxygen atmosphere has no effect. Thus it is




important to know the dominant vaporization route in
assessing an oxide's performance in a particular high -
temperature environment.

In many cases, the second oxide may have a much higher
vapor pressure than 2rO,. This vapor pressure can be
calculated using the SOLGASMIX.program, with the mass balance
now including both metal atoms. Corrections for the lowering
of the vapor pressure by the particular solid solution must
also be considered. Vapor pressures for a number of alkaline
earth--zirconia and rare earth--zirconia systems will be
presented in this report. The thermodynamic data used for
each of these systems is listed in the appendix. It has been
pointed out that in some situations the vaporization of
binary oxides is complicated by the presence of binary oxides
in the vapor, such as LiBOz(v) over LiZO'B203.1O In a case
like this, the binary oxide cannot be treated as a
pseudo-binary system. The vapor pressures of each
constituent oxide can no longer be simply calculated from the
vapor pressures of the pure oxides and their activities in
solution. There is no evidence of this occuring in the
various zirconia-metal oxide systems discussed here, but one
must be aware of this possibility.

Other factors which can be predicted from thermodynamics

include phase changes, reactivity with other gases, and oxide




demixing. As mentioned, the purpose of the second oxide is
to eliminate the destructive phase changes present in pure
ZrO,. This can be checked with an accurate phase diagram,
which unfortunately is not available for all systems.
Reactivity with other gases depends on the application, but
is likely to include water vapor.

Oxide demixing is not entirely a thermodynamic problem,
but should be considered in any discussion of binary oxides
at high temperatures.llr12 In many applications, such as
coatings, the oxide may be under an oxygen potential
gradient. Under these conditions, the faster moving metal
ion is likely to move to the region of lower oxygen
potential. This composition change in the ceramic may lead

to a degradation in high temperature properties.
II. Alkaline Earth Oxides-Zirconia Systems
MgO-2r0, System
This system has been the subject of numerous studies.

Despite these studies, the phase diagram is not firmly

established. The most recent phase diagram is shown in




Figure 3.13 as mentioned, the primary field of interest is
the cubic phase field. This phase has a eutectoid at 1679°K
(1406°C) and 13.5 mol/o MgoO.

Eutectoid decomposition of the cubic phase is a feature
of both MgO and CaO stabilized 2ZrO;. Clearly this is a

factor in cycling cubic 2rOj:
c(ss) » t(ss) + MgO (6)

This phase transformation has been studied in detaill4 and is
fairly slow. It is also further slowed by the addition of
sro.14 at still lower temperatures, the tetragonal phase
would decompose into the monoclinic phase. Both phase
transformations may cause difficulties, particularly the
latter.

The liquidus diagram for 2r03-Mg0 is shown in Figure
4.15 There is a eutectic with the 1:1 mixture at 2100°c,
which is agreed on by several investigators.13r14 However
there is some question about the existence of an intermediate
compound. Most of the phase diagrams do not show an
intermediate compound. However MgO-+2r0O, is available

commerciallyf* Several investigators have reported

*Alfa Products, Danvers, MA.




metastable ordered compounds of composition 2 Mg0+5 ZrOj, and
MgO*6 2ZrO,.13

One of the major obstacles to the use of this material
is the high vapor pressure of MgO--it will preferentially
vaporize.l3r16 Vaporization studies of MgO indicate that the
primary decomposition products are Mg(g) and O(g), with only
a very small amount of Mgo(g).17 We were unable to find data
on how activity of MgO changes in solution. In order to
estimate an upper limit, we shall use the value of a(MgO)
along the MgO-rich cubic phase boundary. Since this is in
equilibrium with essentially pure MgO, the activity of MgO is
essentially unity. Based on this, the vapor pressure for MgO

is shown in Figure 5.

Ca0-2r0O, System

This system is similar to the MgO-ZrO, system, but has
some important differences. A recent phase diagram is shown
in Figure 6.18 uynlike the MgO-2rO, system, there is general
agreement on the formation of several stable intermediate
compounds. At lower temperatures, there is a compound
Ca0-4(2r0Oy). There is also a compound CaO*2ZrO;, which is
stable to its melting point of 2252 K. This compound itself
has been considered for use as an ultra high temperature

structural material and will be discussed. Like the
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MgO-2r0O, system, the Ca0-2r05 system forms cubic phase
euctectoid and its decomposition must be considered.

The Ca0O-2Zr0O, system is quite suitable for
electrochemical measurements and there is some information on
the activity of Ca0 in solid Zro, so_lution.lgr20 These

measurements use a cell of the form:
OZ,Pt}CaO,CaFZECaniZrOz—CaO,CanﬁPt,Oz (7)

The overall cell reaction is simply:
Ca0O(a=1) = CaO(solid solution) (8)
AG = -2EF = -RT ln a(CaO-ss) (9)

Here AG is the Gibbs free energy of formation, E is the
measured EMF, F is the Faraday constant, and R is the gas
constant. Measurements are carried out between 1200 and

1550 K and the results are shown in Figure 7. These
temperatures are somewhat lower than those of interest to us,
but nonetheless, the measurements give an indication of the
strong negative deviations from Raoult's Law, as shown in the
diagram.' These indicate a strong interaction between Ca0O and
Z2r0p which is not surprising, given the eventual compound

formation. Note the Ca0O activity is about an order of
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magnitude lower than that predicated for Raoult's law
behavior or in total about two orders of magnitude lower than
for pure CaO. This type of data is very important in
evaluating the suitablity of ZrO, cubic solid solutions for
use at very high temperatures.

These data also point to the as-yet unsettled
differences in the Ca0O-Z2r0O, phase diagram. They suggest a
a temperature independent solubility limit of 17 m/o CaO in
2rO, over the temperature range 1200-1500 K. The most recent
phase diagram (Figure 6) shows a solubility limit of about 7
m/o CaO below 1413 K and a temperature dependent solubility
limit which is about 17 m/o CaO at 1413 K‘and above. These
differences are very likely due to the slow phase changes at
these temperatures.

Vapor pressure calculations for both pure CaO and CaZrOj
are shown in Figures 8 and 9. For CaO, as with MgO, the
primary vapor products are the metal atom and oxygen.

These figures indicate the compound lowers the vapor pressure
of Ca by about two orders of magnitude. This is consistant
with the solid solution data in Figure 7, for the solid

solution in equilibrium with the compound.
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Sr0-2ro,

P

This system and the BaO-ZrO, system differ from the two
systems previously discussed in»that there is limited solid
solubility and the cubic phase is not stabilized. The
reasons for this are not entirely clear. Some authors have
given arguments based on size factors3--the strontium and
barium atoms have radii too large to enter the zirconia
lattice. Other authors have based arguments on thermodynamic
factors20--the strontium and barium zZirconates are so stable
that a two phase region of zirconia and zirconate is
favorable over a solid solution.

Therefore in this system, the materials of interest are
the compounds. These are shown in the phase diagram21 in
Figure 10. There are several high melting intermediate
phases, including SrzrOj3, Sry2r301q9, and Srp2rO4. The first
of these has a low coefficient of thermal expansion,
suggesting good resistance to thermal shock.l

The calculated vapor pressures for the vapor above SroO
and SrZrO3 are shown in Figures 11 and 12. As with the other
systems discussed, the alkaline earth oxide vaporizes
preferentially to the metal atom and atomic and molecular
oxygen, with the metal oxide vapor roughly an order of

magnitude lower.
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It has been reported that this méterial is quite
susceptible to oxide demixing, with a strong separation
appearing between the SrO and 2rO; oxides under the influence
of an oxygen potential.22 Tﬁis behavior must be considered
when using this material under such conditions. Although not
shown on the phase diagram, it has also been reported that
SrzrO3 undergoes the following phase transformations23:

923 K 1003 K . 1443 K
orthorhombic » tetragonal 1 » tetragonal 2 » cubic (10)

These may be limiting factors in the application of SrZrOj

as a structural material.

BaO-2r0,

This system is somewhat similar to the SrO-2rOj; system
in that BaO does not stablize cubic Zr0O;. We could not
locate a phase diagram for this binary system. However
BaZrO3 is known to be a stable compound and there are several
sources of thermodynamic data for the solid as well as vapor
pressure measurements.

Figures 13 and 14 show the vapor pressures for the major
vapor species over BaO and BaZrOj. Note that the major vapor
specie is BaO(g), not the metal atoms and oxygen as in the
other systems discussed. This is important, since an oxygen

overpressure will not suppress vaporization in this case.
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Figure 15 shows the experimental datal0,24-27 o BaZrOj.
Note the calculated vapor pressures from the thermdynamic
data in the appendix is somewhat lower than the measured
P(BaO). It may be that the measﬁred BazrO3 compounds are a
little BaO rich or there may be some inconsistancies in the
thermodynamic data. The Odoj and Hilpert24'26 data was taken
with a Knudsen Cell Mass Spectrometer using a molybdenum
cell. There was no evidence of reaction with the cell. The
data of Berkowitz-Mattuckl® was taken with a Knudéen Cell
Mass Spectrometer and a rhenium cell. The rhenium cell is
expected to be more inert than the molybdenum cell. The data
of Glenn et. al.27 is an not equilibrium measurement--it was
simply the recession rate of an exposed surface. This was
converted to a vapor pressure by the Hertz-KnudsenLangmuir
equation:
J=p/(2wMRT)1/2 (11)
Here J is the flux leaving the surface, P is the vapor
pressure, M is the molecular weight of the vapor leaving the
surface, R is the gas constant, and T is the temperature.
When the appropriate conversion factors are added, this
equation becomes:
P(atm)=(2.26x10'2)J(mole/cm2-sec)(M(gm/mole))l/z(T(oK))1/2
| (12)
Despite the fact that this is a non-equilibrium measurement,

the pressures measured are quite close to the calculated
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equilibrium values.

In general the alkaline-stabilized zirconia cubic
solutions compounds have some severe limitations for
‘applications above 1900 K. ‘The major problem is likely to be
preferential volatilization of the alkaline earth oxides.
Other difficulties include phése changes and possible oxide
demixing. The materials with the least limitations are

SrZrO3 and CazrOj.

III. Rare Earth Oxide-Zirconia Systems

The rare earth oxide-zirconia systems may be more
promising. In general they have lower vapor pressures and
some exhibit very high melting points. The Russian group of
Belov and Semenov28-32 have looked extensively at these
binary oxide systems.

Consider first the the pure rare earth oxides. These

vaporize as follows:
Mp03(s) = 2 MO(g) + O(g) (13)
This‘is with the exception of Yb, which decomposes as:

Yb,03(s) = 2 Yb(g) + 3 O(g) (14)
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In their initial survey, Belov and Semenov28 list the various
rare earth oxides and their vapor pressures relative to
Lus03. Their data is given in Table I. They also point out
that the zirconia systems with Gd,03, Dy,03, Yby03, Hoy03,
Er,03, and Y503 exhibit liquidus maxima. They studied the
volatilization of each of these and the Luj03-2r0O, system in
the temperature range 2773-2823 K. Only the Yb503-2r0, and
Gd;03-2r0p systems decompose, preferentially losing the
stabilizing oxide.

Belov and Semenov have examined a range of rare earth
oxide-zirconia stabilized systems and found the following
general behavior. These systems first undergo a period of
incongruent vaporization, during which the oxides loose
oxygen and go from ZrO5(M03) to Zro2—x(M203-y)' The oxygen
pressure created tends to suppress decomposition vaporization
reactions, such as 3, 4, 13 and 14. After this a period of
congrueht vaporization begins.

The activities of the two oxide components can be
determined from the congruent vaporization stage. Typically

the activity of a component in solution is given by:

a(i) = P(i)/P°(i) (15)

Here P(i) is the vapor pressure of the component in solution
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and P9(i) is the vapor pressure of the pure component.
In the case of a rare-earth oxide-zirconia system, the

activity of zirconia can be calculated as:
a(2ro0p) = P(2r0;)/P°(2r0y) (16)

However the mass spectrometer intensity of the Zr02+ ion may
not always be easy to determine as a function of composition.
Therefore it is desirable to use the other ions to determine
activities of the components.

Belov32 points out'that‘userof the other ions is more
complex because they are dissociation products. He proposes
a calculation method based on the intensity of the Mot ion
from M;03, as a function of composition. The two primary
vaporization routes for 2ZrO; and M;03 are given by equations

(3) and (13). The equilibrium constants give the following

relations:
a(2r0,) = P(2ro0) P(O-tot) / P®(2r0) PO(O-tot) (17)
a(M,03) = P(MO)2 P(O-tot) / PO(MO)2 PO(O-tot) (18)

Note that P(O-tot) is the amount of O from both ZroO,
decomposition, P(0-2rO,), and M;03 decomposition, P(0-Mp03).

The actual calculation is iterative. The first step involves
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setting P(2r0) = O and taking P(O-tot) = P(0-My03). This is
in equation (18) to calculate the value of a(My0O3). Then the
Gibbs-Duhem equation is used to qalculate a(2r0p). This
value is put into equation (17) to calculate P(2r0O) and
P(0-2r0j). The new P(O-tot) becomes P(0-M;03) + P(0-2ZrO3)
and the second iteration begins. This continues until the
iterations converge. This is an important and useful
technique for obtaining activities in these complex oxide
systems.

In the following discussion of rare earth oxide-zirconia
stabilized materials, a number of sytems will be discussed.
Their vapor pressures and solid solution behavior will be

discussed.
Y203-Zr02

This is the most common of the rare earth stabilized
zirconia systems. A recent phase diagram33 is shown in
Figure 16. Note that the cubic phase field does not extend
to lower temperatures, but undergoes a eutectoid
decomposition, similar to that of the MgO and CaO stabilized
zirconia. This phase change is slow and has only been
recently-detected.

Figure 17 is an activity-composition diagram determined

by mass spectrometry30 for this system. This data was

-
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obtained by the two calculation methods described in the
preceeding discussion. Note the negative deviations from
Raoult's Law, indicating attractive interactions. However
interactions are stronger in the Ca0O-ZrO; system (Figure 7),
in which compound formation is eventually observed.

Figures 18 shows the calculated vapor pressures above
pure Y,03 as well as some data points for the vapor pressure
of Yo(g)34 above Y,03. These show good agreement with the
calculated values. Figure 19 shows the calculated vapor
pressures above Y503°2(2r0O3). Note that the vapor pressures
of YO(g) and Y(g) are lowered by less then an order of
magnitude, which is consistant with Figure 17.

Some recent evidence3® indicates that the Y03 in this
material reacts with water. This is an important point which
merits further investigation for structural applications of

this material.
30203—21‘02

This system is of interest due the low density of Scj03.
Figure 20 shows a phase diagram35. There are some low
temperature phase changes and the location of the liquidus is
stiil in question. However there is a large cubic phase

field.
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Semenov37 and Belov et. al.38-39 have investigated the
vaporization behavior of pure Sc;03 and Sc;03-2rO, solid '
solutions. For the solid solutions, they observe the

following near ideal behavior:
P(Sc0-501)=P°(Sc0) [x(Sc503)] (15)

From this relation and the iterative calculation method
described above, they calculate an activity-composition
diagram is shown in Figure 21. Note the similarity to
that for Y,03-2r0;. Both exhibit negative deviations from
Raoult's Law, indicating attractive forces.

Figure 22 is a plot of the calculated vapor pressures
above pure Scp03 and the experimental data of Semenov37,
which is in good agreement. In the Scy03-2r05 solution, one
would expect limited vapor pressure lowering consistent with
Figure 21 and similar to the ¥503°2(2r0j) case. It should be
noted that the vapor pressure in the solid solution is
sufficiently high that Belov et. al.38 observe after 100
minutes at 2580°K, all the Sc,03 has vaporized from their

sample of 50 m/o Sc303 - 50 m/o ZrO,.
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La203—Zr02

The phase diagram for this system40 is shown in Figure
23. While the cubic phase undergoes a eutectoid
decomposition at about 2248 K, there is a pyrochlore phase
which seems to be stable over a wide range of temperatures.

Figures 24 and 25 show the vapor pressure above Laj03
and Lajy03°2(2r0j3), respectively. Lay03 has one of the
higher vapor pressures of the rare earth oxides (Table I),
which would be a limitation of applications of this system.
Consistent with the other systems, relatively little vapor
pressure lowering is expected in the solid solution (Figure
25).

It is well known that Lajy03 is quite hygroscopic. This
may be also be a limitation in the application of the solid

solution.
CeOZ-ZIOZ

There is currently interest in the partially stabilized
zirconia of this system.41 However, as shown in the phase
diagfam (Figure 26), there is not a fully stabilized
composition down to low temperatures for this system. The

catastrophic monoclinic to tetragonal phase transformation
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limits this material's use as a high temperature structural
material.

Vapor pressure calculations for pure Ce,03 and
Cey2r,07_4 are shown in Figures 27 and 28. This system also
has a rather high vapor pressure, which also limits its
application. Note that in Figure 28, the vapor pressure of
Z2rO and Z2r is actually higher than their vapor pressure above
pure 2rO,. This is an interesting consequence of
vaporization of Ce;03 as CeOy(g) and CeO(g). In the solid
solution, Ce;03°2(2r0,), when both these species are formed,
very little O(g) is generated. 1In fact, since the species
are not formed in equal amounts, some oxXygen must come from
2rO0p. There is no suppression of the vaporization/
decomposition processes (i.e. reactions (3) and (4)) and the
vapor pressures of Z2r0 and Zr go up. These vapor pressures
are not simply related to the activity of 2rO;, which must

remain one or less in solution.

Sm-»0,-Z2r0-> and Gd,0,-Zro0
2Y3 2 2Y3 2

The phase diagrams for these two systems appear similar.
The phase diagram for the Smy;03-2rO, system42 is shown in
Figure 29. There is a large cubic phase field and also a

miscibility gap and temperatures less than 2000 K.
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The vapor pressures for SmpO3 are shown in Figure 30.
The heat of formation of the solid solution Smp03°2(2r0O3)
has been measured42. However, when put into the free energy
minimization program, it was found that the solid solution
decomposed to the constituent oxides at about 1500 K. This
indicates either an inconsistency in the data or the phase
diagram. Nonetheless Sm,03 does have a fairly low vapor
pressure and stabilizes the cubic phase of 2rO;.

The phase diagram for the Gd;03-2rOj system4 is shown
in Figure 31. Note the large cubic phase field. The vapor
pressures for above pure Gd,;03 are shown in Figure 32.

The same situation for the free energy minimization as in

Sm,03°2(2r05) was found, also indicating an inconsistency in
the data or the phase diagram. Although Gd;,O3 is one of the
lower vapor pressure rare earth oxides, Belov and Semenov28
have found that on heating in the range 2773-2823 K, Gd;03

completely vaporizes from a solid solution with 2r05.

Yb7045-2r0,5, Dy»03-2r05, Ho903-21r07, and Er,03-2r0;

These systems all show similar phase diagrams, which
exhibit large cubic phase fields and liquidus maxima. These
diagrams45'48 are shown in Figures 33, 35, 37, and 39. Note

that in each case the liquidus maxima is at a composition of
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0.15 to 0.20 Mp03-2rOp and a temperature near 2800 K. The
phase diagrams are very likely all somewhat tentative, but
they do show a lack of phase changes for these compositions.

As mentioned previously, Ybéo3 is one of the few rare
earth oxides which decomposes to the metal and oxgyen. Its
vapor pressure is shown in Figure 34. Data for the solid
oxide solution was not available. Belov and SemenovZ8 have
noted that in the temperature range 2773 K to 2823 K, Yb;05
tends to completely vaporize from the solid solution.

The vapor pressures above Dy203, Hoy03, and Er,0O3 are
shown in Figures 36, 38, and 40. Solid solution data was not
available. However systems which exhibit liquidus maxima
show significant interactions49 and hence these systems
should show a corresponding vapor pressure lowering. Belov
and Semenov28 have shown that each of these systems at 2, 3,
10, and 50 m/o do not decompose at temperatures of
2773-2823 K. They have have also suggested the Luy03-2r0;
system, since Lu;03 has the lowest vapor pressure of the rare
earth oxides, as shown in Table I. However a phase diagram
could not be located for the Lu;03-2r0, system. Clearly more

work is needed on these important systems.
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V. Conclusions

The thermodynamic properties of a number of
oxide-zirconia systems have been examined. Particular
emphasis has been on phase changes and volatility.

The alkaline earth oxide systems have been examined.
Magnesia and calcia stabilize zirconia, strontia and baria do
not stabilize zirconia but form compounds. Clearly the
MgO-2rO, and BaO-2ZrOj systems show too much volatility to be
useful. The Ca0-2rO,; and SrO-ZrOp systems may show some
limited application.

The rare earth oxide-zirconia systems generally have
lower vapor pressures. The Y;03-2rOj, Sc,03-2r07,
Lay03-2r0y, Cep03-ZrOy, Smp03-2rOp, Gdp03-2rOz, Dyp03-2r0a,
Ho,03-2r03, and Erp03-ZrOp systems were examined. The
Lay03-2r0; system has a high vapor pressure and is
hygroscopic. The Ce;03-2r0O; system has a very high vapor
pressure and does not really have a fully stabilized cubic
structure to lower temperatures. The Smy03-2ZrO, and
Gd,03-2r0, system may have some phase changes--more work
needs to be done. Previous investigations have suggested
that the Sc,03-2rOj, Yby03-2rOp, and Gd;03-2rOp systems may
haveta volatility problem--more work in the temperature range
of interest is needed. The Y503-2rOj, Dy,03-Z2rOp,

Ho,03-2r05, and Er,03-2r0;) systems all look quite promising.
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They have low vapor pressures and current evidence suggests
no serious phase changes. Other more exotic rare earth
systems may also show promise.

The purpose of this review ﬁas been to bring together -
all the available thermodynamic data on some metal
oxide-zirconia systems. A good deal of this data is from
obscure and difficult to locate sources. From this data
a number of systems appear promising for use as structural
materials in the temperatures above 1900 K. However this
review also points towards the need for more data--in
particular more phase change information, further vapor
pressure measurements, and in general upper temperature

limits for the application of each material.
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Table I. Relative vapor pressures of some rare earth oxides,

according to Belov and Semenov28

Oxide } Evaporation Rate at 2500 K
i W(M503) /W(Luy03)

Lajy03 i 130

Nd,03 i 70

Sm503 i 40

Gd,03 i 15

Dy5,03 i 10

¥by03 | 10

Tm503 % 6

Ho,03 i 4

Er,03 i 4

Y503 i 2

Lu,y03 i 1
i
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APPENDIX. THERMODYNAMIC DATA

Thermodynamic data for the more common oxides is quite
plentiful; for the less common oxides it 1s sparse. Where
possible, the best thermodynamic data was used. The most
desirable information for each system is the aH({298), s(298),
heat capacity and heat of any phase changes. This data is

listed in Table AT.
The data for the zirconium-oxygen and alkaline earth

metal-oxygen systems was taken from the JANAF tables.l Heat

capacities were fitted to an equation of the form:

Cp = A+ Bx 1073T + C x 10°/T2 + D x 107612 (1)
The data for the alkaline earth zirconate systems were
taken from other sources and is listed in Table AII. This
includes both estimated and measured data. Where possible
measured data were used in the final calculations, as shown
in Table AI. As mentioned in the text, the Ca0-2r0O; system
forms a solid solution. The electrochemical datal?,18 jig for
the reaction of the saturated solid solution with CaO to form
CazrO3. For this reason the electrochemical data cannot be
directly compared to the calorimetric data. However in the

case of SrZrO3 and BaZrO3, the two types of measurements can
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be directly compared and show good agreement, as indicated in
the Table AII.

Thermodynamic data for the rare earth-oxygen systems was
more difficult to locate. Most of the data for the rare
earth metals and condensed phase oxides was taken from the
tables by Pankratz.? Most of these oxides vaporize to the
monoxide. Data for some of the rare earth monoxides of Y and
Sc was taken from the tables of Ruzinov.1l0 Data for the
volatile oxides of the other rare earth monoxide was
available as the free energy of formation from the original
sources.14,16 The heats of formation of the solid oxide
solutions of the composition M;03°2(2r0Oy) were taken from the
calorimetric data of Korneev et. al.il Entropies were
estimated to be 47.8 cal/mole-°K, after Barin and Knackel3
and heat capacities were estimated by summing the
contribution from M;03 and 2(Zr02)20.

For each of the systems, the data was combined to
obtain free energy of formation from the elements in their
standard states. The free energy was obtained in the

following form:

G = AG/T + BG + CG*T + DG*T~2 + EG*T3 + FG*T*LOG(T) (2)

This free energy was then put into the SOLGASMIX-PV computer

program to calculate the vapor pressures for each system.
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